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AFIT/GAM/ENC/06-03

Abstract

We consider the semilinear elliptic equation ∆u = p(x)f(u) on a domain

Ω ⊆ Rn, n ≥ 3, where f is a nonnegative function which vanishes at the origin

and satisfies g1 ≤ f ≤ g2 where g1, g2 are nonnegative, nondecreasing functions

which also vanish at the origin, and p is a nonnegative continuous function with

the property that any zero of p is contained in a bounded domain in Ω such that p

is positive on its boundary. For Ω bounded, we show that a nonnegative solution

u satisfying u(x) → ∞ as x → ∂Ω exists provided the function ψ(s) ≡ ∫ s

0
f(t) dt

satisfies
∫∞
1

[ψ(s)]−1/2 ds < ∞. For Ω unbounded (including Ω = Rn), we show that

a similar result holds where u(x) → ∞ as |x| → ∞ within Ω and u(x) → ∞ as

x → ∂Ω if p(x) decays to zero rapidly as |x| → ∞.
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Existence of Explosive Solutions to Non-Monotone Semilinear

Elliptic Equations

I. Introduction

We consider the semilinear elliptic equation

∆u = p(x)f(u), x ∈ Ω ⊆ Rn, n ≥ 3, (1)

where Ω is an open, connected set in Rn and the function f is nonnegative on [0,∞)

and satisfies the inequality

g1 ≤ f ≤ g2, (2)

where the functions g1 and g2 are continuous and nondecreasing (monotone) on

[0,∞) with g1(0) = 0, g2(0) = 0, g1(s) > 0 and g2(s) > 0 if s > 0. We also require

the function p to be nonnegative and continuous on Ω. We give conditions on the

function f which insure that Eq.(1) has a nonnegative solution u for which u(x) →∞
as x → ∂Ω. We call these functions explosive (large) solutions of (1) on Ω. If Ω is

unbounded, we require u(x) → ∞ as |x| → ∞ within Ω. Furthermore, if Ω = Rn,

we call these functions entire explosive solutions. Such problems arise in the study

of steady state diffusion type problems, the study of the subsonic motion of a gas

[16], the electric potential in some bodies [13], and Riemannian geometry [6].

Lair [12] gave existence results where the function f was required to be non-

decreasing. We note here that our results extend some of those in [12], to the case

where f is nondecreasing. In our case we merely require that the function f be

nonnegative and f satisfy (2).
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For Ω bounded and p(x) = 1, Keller [8] and Osserman [15] show that a neces-

sary and sufficient condition for

∆v1 = p(x)g1(v1), x ∈ Ω ⊆ Rn, n ≥ 3, (3)

to have an explosive solution is that the function g1 satisfies

∫ ∞

1

[∫ s

0

g1(t) dt

]−1/2

ds < ∞. (4)

In Theorem 2.1.2 we show that if (4) holds, then Eq.(1) has a nonnegative explosive

solution on a bounded domain Ω. We also show, for Ω = Rn, that if (4) holds then

(1) has a nonnegative entire explosive solution provided p decays to zero rapidly (See

Theorem 2.2.2.). Furthermore, we show that if

∫ ∞

1

[∫ s

0

g2(t) dt

]−1/2

ds = ∞, (5)

then Eq.(1) has no nonnegative explosive solution on a bounded domain Ω (See

Theorem 2.1.2.).

Lair [12] has shown that g1 satisfying (4) is sufficient to guarantee that (3) has

a positive explosive solution where the nonnegative, continuous function p is allowed

to vanish on large parts of Ω including its boundary. If g1(s) = sγ, then Condition

(4) is equivalent to γ > 1, and the problem of finding nonnegative explosive solutions

of Eq.(3) for this particular case, for both Ω bounded and Ω = Rn, were considered

in [6, 11]. Our results will contain these as special cases since our condition on the

function f is weaker than that of [12], namely since f , although it is bounded above

and below by nonnegative increasing functions, is only required to be nonnegative.

For Ω unbounded, Keller [8], Lair [12], and Osserman [15] give results for a

more general f ; however, all other known results (except[8, 12, 15]) require f to have

the unique forms f(s) = sγ, or f(s) = ecs. (See, e.g., [5, 6, 11, 13].) Our existence

2



results, as before, contain these as special cases. We show that, if p decays to zero

rapidly as |x| → ∞, then Condition (4) is both necessary and sufficient to guarantee

that Eq.(1) has a nonnegative explosive solution on Ω (See Corollary 1.).

1.1 Background

We would like to present preliminary work necessary for our existence results,

however, before this we seek a deeper understanding to the origins of Eq.(1). In the

work to follow we provide an outline of previous work that, through the years, has

led to our problem.

Explosive solutions of semilinear elliptic equations of the type

∆u = f(u), x ∈ Ω, u|∂Ω = ∞

were first studied in 1916 for the case f(u) = eu by Bieberbach [3]. In [3] he

had shown that the equation has a unique classical explosive solution in a bounded

domain with smooth boundary in R2. These results were later generalized by J.B

Keller [8] and Robert Osserman [15] in 1957. In [8] it was shown that a relatively

simple upper bound is obtained for any solution, in any number of variables, of the

nonlinear equation ∆u = f(u). The bound is determined by the function f(u) which,

in turn, must be positive and satisfy a particular growth condition G. It turns out

that this growth condition is the, now familiar, growth condition given by inequality

(4) with g1 replaced by f . An important result of Theorem 3 in [8] is the existence

of explosive solutions, in any bounded domain, to ∆u = f(u) provided that f(u)

is an increasing function. This result, as we will see, is very important as it was

later used by Lair [12] who then provided a necessary and sufficient condition for

existence of explosive solutions to Eq.(1) where the function f was also required to

be nondecreasing.
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In [15] the existence of solutions of the nonlinear differential inequality ∆u ≥
f(u) were established in Rn. Osserman showed the condition that the function

f(u) be convex was no longer required. Furthermore, he was able to attain greater

information on the behavior of solutions.

Cheng and Ni [6] gave a complete classification of all possible solutions of the

problem

∆u = p(x)uγ, x ∈ Rn, (6)

where γ > 1 and the nonnegative function p behaves like |x|−l near infinity for some

l > 2. In particular, they show that Eq.(6) has a unique entire explosive solution in

Rn that blows up at infinity at the rate of |x|q where q = (l−2)/(γ−1). Furthermore,

Bandle and Marcus [2] proved the existence and uniqueness of an explosive positive

solution in bounded and unbounded domains (not all of Rn) for the more general

equation

∆u = g(x, u),

which includes the case g(x, u) = p(x)uγ where γ > 1 and p(x) is a positive continu-

ous function in Ω such that p and 1/p are bounded. They also studied the behavior

of the explosive solutions near the boundary of Ω.

Lair and Wood [11] then further extended the results of Cheng and Ni [6]

and Bandle and Marcus [2]. In particular they proved the existence of explosive

solutions on a bounded domain Ω with conditions on p relaxed to allow it to be zero

on large parts of Ω including ∂Ω. This extended the results of [2, 6] where p was

either required to be positive and continuous on Ω (see [2]) or p was required to be

positive on ∂Ω (see [6]). Furthermore, they showed that Eq.(6) has an entire explosive

solution under more general conditions on p than given in [6]. In particular, instead
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of requiring |x|mp(x) to be bounded above for some m > 2, they simply require

∫ ∞

0

rφ(r) ds < ∞, (7)

where φ(r) = max|x|=r p(x). They also proved the existence of explosive solutions to

(6) on unbounded domains which are not all of Rn. Furthermore, they prove that no

entire explosive solutions of Eq.(6) exist if 0 ≤ γ ≤ 1 and p satisfies inequality (7).

Lastly, they showed that their positiveness condition on p, which requires any zeros

of p be contained in a domain within Ω on whose boundary p is positive, is nearly

optimal. In particular, they showed that that if p vanishes in a neighborhood of ∂Ω,

then no explosive solution of (6) exists.

All of the previously stated work is what led up to the results of Lair [12].

As stated before, the works of Cheng and Ni [6], Bandle and Marcus [2], and Lair

and Wood [11] can be treated as special cases of [12]. With this more in-depth

understanding of the origins of Eq.(1) at hand, we now seek a grasp of the underlying

elliptic theory necessary for our main results.

1.2 Preliminaries

Before we present our main results, it will be important to present some of the

underlying theory in order to form a basis that allows us to prove our results. The

first, and probably the most basic is that of upper/lower solutions, which are also

referred to as barrier methods. We define them here as they will be used later in

proving our main results.

Definition 1.2.1. An upper solution to the following boundary value problem

∆u = p(x)f(u), x ∈ Ω, (8)

u(x) = k, x ∈ ∂Ω,
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is a function u satisfying

∆u ≤ p(x)f(u) x ∈ Ω,

u ≥ k x ∈ ∂Ω.

A lower solution to (6) is a function u satisfying

∆u ≥ p(x)f(u) x ∈ Ω,

u ≤ k x ∈ ∂Ω.

Theorem 1.2.2. (Theorem 2.3.1 of [17]) Let φ be an upper solution and ξ a lower

solution with ξ ≤ φ on Ω to Eq.(8). Then there exists a solution u to (8) with

ξ ≤ u ≤ φ.

We now present the standard maximum principle argument from elliptic theory.

Although there are many variations of this principle, we give the theorem which is

most useful for our results.

Theorem 1.2.3. (Theorem 3.3 of [7]) Let L be a linear elliptic differential operator

of the form

Lu = aij(x)Diju + biDiu + c(x)u, aij = aji,

where x = (x1, x2, ..., xn) in Ω ⊆ Rn with c(x) ≤ 0 in Ω. Suppose that u and v are

functions in C2(Ω) ∩ C(Ω) satisfying Lu ≥ Lv in Ω and u ≤ v on ∂Ω, then u ≤ v

in Ω.

Since the laplacian is a linear elliptic differential operator, letting L = ∆ in

the above theorem will be of great use in later proving our results. Before moving on

we present a very important concept of elliptic theory, namely, gradient estimates.

In order to prove our results for the case where Ω = Rn we will need the following

theorem.
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Theorem 1.2.4. (Theorem 3.9 of [7]) Let u ∈ C2(Ω) satisfy Poisson’s equation,

∆u = f , in Ω. Then

sup
Ω

dx|∇u(x)| ≤ C(sup
Ω
|u(x)|+ sup

Ω
d2

x|f(x)|),

where C = C(n) and dx = dist(x, ∂Ω).

From this result we will be able to determine gradient bounds for successive

subsequences of approximate solutions to (1) and we will then have that our ap-

proximate solutions are equicontinuous, and as long as their solutions are uniformly

bounded we may apply the Ascoli-Arzela theorem which guarantees the existence of

a convergent subsequence, thus establishing existence. A standard bootstrap argu-

ment will then show that our solutions are, in fact, classical solutions of Eq.(1). We

now present the Ascoli-Arzela Theorem as it will be crucial in later establishing our

existence results.

Definition 1.2.5. (Definition 1.17 of [1]) A subset K of a normed space X is called

compact if every sequence of points in K has a convergent subsequence in X to an

element of K. Furthermore, a subset K of X is called precompact in X if its closure

K in the norm topology of X is compact.

Theorem 1.2.6. (Theorem 1.34 of [1])(Ascoli-Arzela Theorem) Let Ω be a bounded

domain in Rn. A subset K of C(Ω) is precompact in C(Ω) if the following two

conditions hold:

(i) There exists a constant M such that |φ(x)| ≤ M holds for every φ ∈ K and

x ∈ Ω.

(ii) For every ε > 0 there exists δ > 0 such that if φ ∈ K, x, y ∈ Ω, and |x− y| < δ,

then |φ(x)− φ(y)| < ε.

Before we present the very important theory of Sobolev spaces, we first estab-

lish two useful concepts of elliptic theory. We first present a definition of what it

means for a bounded domain Ω to have C2-boundary.
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Definition 1.2.7. A bounded domain Ω ⊆ Rn has C2-boundary if at each point

x0 ∈ ∂Ω there exists a ball B = B(x0, R) centered at x0 with radius R and a one-to-

one mapping ω on B onto Ω ⊆ Rn such that:

(i) ω(B ∩ Ω) ⊂ Rn
+; (ii) ω(B ∩ ∂Ω) ⊂ ∂Rn

+; (iii) ω ∈ C2(B), ω−1 ∈ C2(D).

We next would like to establish a definition of the Hölder space C2+α(Ω). This

space is important as we will later show that our solutions are in C2+α. However,

before we present this definition, we first need an understanding of Hölder continuity.

Definition 1.2.8. Let x0 be a point in Rn and f a function defined on a bounded

open set Ω containing x0. For 0 < α < 1, we say that f is Hölder continuous with

exponent α at x0 if the quantity

[f ]α;x0 = sup
x∈Ω

|f(x)− f(x0)|
|x− x0|α

is finite. We call [f ]α;x0 the α-Hölder coefficient of f at x0 with respect to Ω. Fur-

thermore, we say f is uniformly Hölder continuous with exponent α in Ω provided

the quantity

[f ]α;Ω = sup
x,y∈Ω

x 6=y

|f(x)− f(y)|
|x− y|α , 0 < α ≤ 1,

is finite.

Definition 1.2.9. The Hölder space C2+α(Ω) is a subspace of C2(Ω) consisting of

functions whose second order partial derivatives are uniformly Hölder continuous

with exponent α in Ω.

We now present the very important theory of Sobolev spaces that will be crucial

in later showing that the standard bootstrap argument can be used to prove that

our solutions are classical solutions of Eq.(1) on Ω. As will be demonstrated later,

the bootstrap argument makes use of Sobolev imbeddings in order to show that our
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solutions are truly C2+α (i.e., that our solutions are sufficiently smooth on Ω). At

this point we find it prudent to define first exactly what it means to be an imbedding.

Definition 1.2.10. (Definition 1.25 of [1]) We say the normed space X is imbedded

in the normed space Y , and we write X → Y to designate this imbedding, provided

that

(i) X is a vector subspace of Y , and
(ii) the identity operator I defined on X into Y by Ix = x for all x ∈ X
is continuous.

We shall now establish some facts concerning the Sobolev Imbedding Theo-

rem; however, before we present this theorem we first must comprehend the spaces

involved.

Definition 1.2.11. A normed linear space B is a Banach space provided the space

B is complete. That is, provided every Cauchy sequence converges in B.

Definition 1.2.12. Let u be locally integrable in Ω and α a multi-index. Then, a

locally integrable function v is called the αth weak derivative of u if it satisfies

∫

Ω

ϕv dx = (−1)|α|
∫

Ω

uDαϕdx for all ϕ ∈ C
|α|
0 (Ω).

Furthermore, we call a function k-times weakly differentiable if all its weak deriva-

tives exist for orders up to and including k.

Definition 1.2.13. A Sobolev space Wm,p(Ω) is a Banach space defined by

Wm,p(Ω) = {u ∈ Lp : Dαu ∈ Lp(Ω) for all |α| ≤ m},

where α = (α1, ..., αn), |α| = α1 + ... + αn, and the derivatives Dαu are weakly

differentiable.

At this point we present our first chain of imbeddings that will be needed

for later use in the standard bootstrap argument. From [1] we have the chain of
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imbeddings

Wm,p
0 (Ω) → Wm,p(Ω) → Lp(Ω),

where Wm,p
0 (Ω) is a Sobolev space with compact support, and Lp(Ω) is the classical

Banach space of measurable functions on Ω that are p-integrable, p ≥ 1. We further

define norms in the spaces Wm,p and Lp. The norm in the Sobolev space Wm,p is

given by

‖u‖W m,p(Ω) =




∫

Ω

∑

|α|≤m

|Dαu|p dx




1/p

.

We also have the norm in Lp(Ω), 1 ≤ p < ∞, defined by

‖u‖Lp(Ω) =

(∫

Ω

|u|p dx

)1/p

,

and for p = ∞ we get

‖u‖L∞(Ω) = ess sup
Ω
|u|.

Notice that the function u can be in L∞(Ω) and still have supΩ |u| = ∞ which is

why we require the “essential” supremum.

Definition 1.2.14. (Definition 4.6 of [1]) The domain Ω satisfies the cone condition

if there exists a finite cone C such that each x ∈ Ω is the vertex of a finite cone Cx

contained in Ω and congruent to C.

Definition 1.2.15. (Definition 4.9 of [1]) The domain Ω satisfies the strong local

Lipschitz condition if there exists positive numbers δ and M , a locally finite open

cover {Uj} of ∂Ω, and, for each j a real-valued function fj of n− 1 variables, such

that the following conditions hold:

(i) For some finite R, every collection of R + 1 of the sets Uj has empty

intersection.
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(ii) For every pair of points x, y ∈ Ωδ such that |x− y| ≤ δ, there exists j such

that

x, y ∈ Vj ≡ {x ∈ Uj : dist(x, ∂Uj) > δ}.

(iii) Each function fj satisfies a Lipschitz condition with constant M : that is,

if β = (β1, ..., βn−1) and ρ = (ρ1, ..., ρn−1) are in Rn−1, then

|f(β)− f(ρ)| ≤ M |β − ρ|.

(iv) For some Cartesian coordinate system (ζj,1, ..., ζj,n) in Uj, Ω ∩ Uj is rep-

resented by the inequality

ζj,n < fj(ζj,1, ..., ζj,n).

If Ω is bounded, the rather complicated set of conditions above reduce to the

simple condition that Ω should have a locally Lipschitz boundary, that is, that each

point x on the boundary of Ω should have a neighborhood Ux whose intersection with

∂Ω should be the graph of a Lipschitz continuous function.

Definition 1.2.16. We define the space of bounded continuous functions Cj
B(Ω) to

consist of those functions u ∈ Cj(Ω) for which Dαu is bounded on Ω for 0 ≤ |α| ≤ j.

Furthermore, Cj
B(Ω) is a Banach space with norm given by

‖ u ‖Cj
B(Ω)= max

0≤α≤j
sup
x∈Ω

|Dαu(x)|.

With these definitions, we now present the Sobolev Imbedding Theorem.

Theorem 1.2.17. (Theorem 4.12 of [1]) Let Ω be a domain in Rn and, for 1 ≤ k ≤
n, let Ωk be the intersection of Ω with a plane of dimension k in Rn. (If k = n, the

Ωk = Ω.) Let j ≥ 0 and m ≥ 1 be integers and let 1 ≤ p < ∞.

PART I Suppose Ω satisfies the cone condition.
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Case A If either mp > n or m = n and p = 1, then

W j+m,p(Ω) → Cj
B(Ω).

Moreover, if 1 ≤ k ≤ n, then

W j+m,p(Ω) → W j,q(Ωk), for p ≤ q ≤ ∞,

and, in particular,

Wm,p(Ω) → Lq(Ω), for p ≤ q ≤ ∞.

Case B If 1 ≤ k ≤ n and mp = n, then

W j+m,p(Ω) → W j,q(Ωk), for p ≤ q ≤ ∞,

and, in particular,

Wm,p(Ω) → Lq(Ω), for p ≤ q ≤ ∞.

Case C If mp < n and either n−mp < k ≤ n or p = 1 and n−m ≤ k ≤ n, then

W j+m,p(Ω) → W j,q(Ωk), for p ≤ q ≤ p∗ = kp/(n−mp).

In particular,

Wm,p(Ω) → Lq(Ω), for p ≤ q ≤ p∗ = np/(n−mp).

12



The imbedding constants for the imbeddings above depend only on n,m, p, q, j, k, and

the dimensions of the cone C in the cone condition.

PART II Suppose Ω satisfies the strong local Lipschitz condition. Then the target

space Cj
B(Ω) of the first imdedding above can be replaced with the smaller space

Cj(Ω), and the imbedding can be further refined as follows:

If mp > n > (m− 1)p, then

W j+m,p(Ω) → Cj,λ(Ω), for 0 < λ ≤ m− (n/p),

and if n = (m− 1)p, then

W j+m,p(Ω) → Cj,λ(Ω), for 0 < λ < 1.

Also, if n = m− 1 and p = 1, then the above imbedding holds for λ = 1 as well.

PART III All of the imbeddings in Parts A and B are valid for arbitrary domains Ω

if the W -space undergoing the imbedding is replaced with the corresponding W0-space.

We now have an adequate understanding of the standard elliptic theory nec-

essary to prove our results. Although not all of the previously stated theory will be

used explicitly in our results, the derivations should be clear. At this point we are

ready to present our main results.
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II. Main Results

In this section we state and prove our results. Throughout this thesis, we require the

nonnegative function p to satisfy the following circumferentially positive (c-positive)

condition:

(c-positive on Ω) For any x0 ∈ Ω satisfying p(x0) = 0, there exists a domain Ω0

such that x0 ∈ Ω0, Ω0 ⊂ Ω, and p(x) > 0 for all x ∈ ∂Ω0.

In order to prove our first existence result we first establish the following lemma.

Lemma 2.0.18. Let x0 ∈ Rn\Ω, n ≥ 3, and define h(r) = (1 + r2)−1/2, where

r(x) ≡ |x− x0|. Then, ∆h(r) < 0 on Ω.

Proof: We have

∆h(r) = h′′ +
n− 1

r
h′

= 3r2(1 + r2)−5/2 − (1 + r2)−3/2 − n− 1

r
r(1− r2)−3/2

= (1 + r2)−5/2[3r2 − (1 + r2)− (n− 1)(1 + r2)]

= (1 + r2)−5/2[3r2 − 1− r2 − (n− 1)− (n− 1)r2]

= (1 + r2)−5/2[−1− (n− 1) + (3− n)r2].

By hypothesis we have that n ≥ 3. Thus ∆h(r) < 0. This completes the proof.

¥

2.1 Existence of Solutions on Bounded Domains

Proposition 2.1.1. Suppose Ω is a bounded domain in Rn with C2 boundary, p

a nonnegative C(Ω) function that is c-positive on Ω, and g1 ≤ f ≤ g2 where g1
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and g2 are both nonnegative, continuous, and monotone on [0,∞). Then, for any

nonnegative constant c, the boundary value problem

∆v = p(x)f(v), x ∈ Ω, (9)

v(x) = c, x ∈ ∂Ω

has a nonnegative classical solution v on Ω.

Proof: From Lair [12] we have that for any nonnegative constant c there exist

unique nonnegative classical solutions v1 and v2 to the following boundary value

problems

∆v1 = p(x)g1(v1), x ∈ Ω, (10)

v1(x) = c, x ∈ ∂Ω,

∆v2 = p(x)g2(v2), x ∈ Ω, (11)

v2(x) = c, x ∈ ∂Ω.

We now wish to show that v1 ≥ v2 on Ω. To do this, suppose v1 < v2 at some point

in Ω. Since v1 = v2 on ∂Ω, there must be a point in Ω where v1 < v2. Now, choose

a positive number ε small enough such that maxΩ[v2(x)− v1(x)− εh(r)] > 0, where

h(r) is defined as in Lemma 2.0.18. Then,

0 < v2(x0)− v1(x0)− εh(r) ≡ max
Ω

[v2(x)− v1(x)− εh(r)].
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Thus, at x0, where the maximum occurs we have

0 ≥ ∆(v2 − v1 − εh(r))

= ∆v2 −∆v1 − ε∆h(r)

= p(x0)[g2(v2(x0))− g1(v1(x0))]− ε∆h(r)

≥ p(x0)[g1(v2(x0))− g1(v1(x0))]− ε∆h(r)

≥ −ε∆h(r)

> 0,

a contradiction. Thus, v2 ≤ v1 in Ω.

Now, letting v = v1 and v = v2 we have that v ≤ v in Ω and

∆v = p(x)g1(v) ≤ p(x)f(v), x ∈ Ω (12)

∆v = p(x)g2(v) ≥ p(x)f(v), x ∈ Ω (13)

Thus, v and v are upper and lower solutions, respectively, of ∆v = p(x)f(v), x ∈ Ω.

Hence, by Theorem 1.2.2, Eq.(9) has a nonnegative classical solution v on Ω with

v ≤ v ≤ v.

¥

Theorem 2.1.2. Suppose Ω is a bounded domain in Rn with C2 boundary and p

is a nonnegative C(Ω) function which is also c-positive. If the function g1 satisfies

inequality (4), then Eq.(1) has a nonnegative explosive solution in Ω. Furthermore, if

∫ ∞

1

[∫ s

0

g2(t) dt

]−1/2

ds = ∞,

then Eq.(1) has no nonnegative explosive solution on Ω.
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Proof: Suppose that f satisfies inequality (4) and recall, from hypothesis, that

g1 ≤ f ≤ g2. From this we have that

∫ ∞

1

[∫ s

0

g2(t) dt

]−1/2

ds ≤
∫ ∞

1

[∫ s

0

f(t) dt

]−1/2

ds ≤
∫ ∞

1

[∫ s

0

g1(t) dt

]−1/2

ds < ∞.

Let vk and wk be the unique nonnegative solutions of

∆vk = p(x)g1(vk), x ∈ Ω, (14)

vk(x) = k, x ∈ ∂Ω,

and

∆wk = p(x)g2(wk), x ∈ Ω, (15)

wk(x) = k, x ∈ ∂Ω.

Then, from [12] we have that the sequence {vk} and {wk} are nondecreasing. We note

here that using an analogous upper/lower solution approach to that of Proposition

2.1.1, in order to attain a sequence of solutions {uk} to Eq.(1), will not work here

since the desired sequence uk is not necessarily monotone; which, in turn, implies

that although the sequence uk is bounded, it need not converge. To show that (1)

does indeed have a nonnegative explosive solution in Ω we will construct a monotone

sequence of solutions analogous to those of (14) and (15). This, as we will see, is

not very difficult. To do this, let us first consider the case where k = 1 in the above

boundary value problems. We have

∆v1 = p(x)g1(v1), x ∈ Ω,

v1(x) = 1, x ∈ ∂Ω,
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and

∆w1 = p(x)g2(w1), x ∈ Ω,

w1(x) = 1, x ∈ ∂Ω.

By virtue of Proposition 2.1.1, letting u1 = v1 and u1 = w1 we have that there exists

a nonnegative classical solution u1 of

∆u1 = p(x)f(u1), x ∈ Ω,

u1(x) = 1, x ∈ ∂Ω,

with w1 = u1 ≤ u1 ≤ u1 = v1. We now consider the following system of equations

∆v2 = p(x)g1(v2), x ∈ Ω,

v2(x) = 2, x ∈ ∂Ω,

and

∆u1 = p(x)f(u1), x ∈ Ω,

u1(x) = 1, x ∈ ∂Ω.

In this case, letting u2 = v2 and u2 = u1 we have that there exists a nonnegative

classical solution u2 of

∆u2 = p(x)f(u2), x ∈ Ω,

u2(x) = 2, x ∈ ∂Ω,
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with w1 ≤ u1 ≤ u2 ≤ u2 = v2. Continuing this line of reasoning we have that there

exists a nonnegative classical solution uk to

∆uk = p(x)f(uk), x ∈ Ω,

uk(x) = k, x ∈ ∂Ω,

with w1 ≤ uk−1 ≤ uk ≤ vk, k ≥ 2. By construction the sequence {uk} is monotone.

Furthermore, we already know that the sequence {vk} is monotonic and converges

to a classical solution v of

∆v = p(x)g1(v), x ∈ Ω,

v(x) → ∞, x → ∂Ω.

It then follows that w1 ≤ uk−1 ≤ uk ≤ v. Thus, uk is also bounded above and below.

Hence, the sequence {uk} converges on Ω to some function u. We now outline the

standard bootstrap argument which proves the function u(x) is indeed a solution to

(1).

Let x0 ∈ Ω ⊆ Rn, and B(x0, r) the ball of radius r centered at x0 such that

it is contained in Ω. Let ψ be a C∞ function which is equal to 1 on B(x0, r/2) and

zero off B(x0, r). We have

∆(ψuk) = 2∇ψ · ∇uk + qk, k ≥ 1,

where

qk = uk∆ψ + ψ∆uk (16)
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is a term whose L∞ norm is bounded independently of k on B(x0, r). We therefore

have

ψuk∆(ψuk) = Ak · ∇(ψuk) + sk, (17)

where Ak = 2uk∇ψ and sk = ψukqk − uk[(2uk∇ψ · ∇ψ)] are bounded independently

of k. Now, integrating (17) over B(x0, r) we have

∫

B(x0,r)

|∇(ψuk)|2 dx = −
∫

B(x0,r)

[Ak · ∇(ψuk) + sk] dx

≤ c1

(∫

B(x0,r)

|Ak||∇(ψuk)| dx

)
+ c2

≤ c1

(∫

B(x0,r)

|∇(ψuk)|2 dx

)1/2

+ c2,

where c1, c1, and c2 are some constants independent of k. Hence we have that

‖ ∇(ψuk) ‖2
L2(B(x0,r))≤ c2

1 + 2c2.

From this, it follows that the L2(B(x0, r))-norm of |∇(ψuk)| is bounded indepen-

dently of k. Hence, the L2(B(x0, r/2))-norm of |∇uk| is bounded independently of

k. Similarly, letting ψ1 be a C∞ function which is equal to 1 on B(x0, r/4) and

zero off B(x0, r/2), we may show that the W 2,2(B(x0, r/4))-norm of uk is bounded

independently of k. It then follows from the Sobolev embedding theory that the

Lq(B(x0, r/4))-norm of |∇uk| is bounded independently of k for q = 2n/(n− 2).

Continuing this line of reasoning we arrive at a number r1 > 0 such that there

is a subsequence of {uk}∞1 , which we may assume is still the sequence itself, which

converges in C1+α(B(x0, r1)), for some positive number α < 1.
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Let ψ be a C∞ function equal to 1 on B(x0, r1/2) and equal to zero off B(x0, r1).

Then

∆(ψuk) = 2∇ψ · ∇uk + q̂k,

where q̂k is given in (16). Now, we consider two cases regarding the regularity of the

function p(x).

Case 1: p(x) ∈ C∞(Ω). The right-hand side of the above equation converges in

Cα(B(x0, r1)). Hence, by Schauder theory, {ψuk}∞1 converges in C2+α(B(x0, r1/2)).

Since x0 was arbitrary, it follows that u ∈ C2+α(Rn) and hence a solution to Eq.(1)

Case 2: p(x) ∈ C(Ω). Since the subsequence {uk}∞1 converges in C1+α(B(x0, r1))

we have that uk
s−C(B(x0,r1))−→ u, and consequently ∆uk = pk(x)f(uk)

s−C(B(x0,r1))−→
p(x)f(u) ≡ z. Using the fact that the laplacian is a closed linear operator implies

that u ∈ D(∆), and ∆u = z. Furthermore, since x0 was chosen arbitrarily, we have

that u is a classical solution of (1).

We next show that our solution u is an explosive solution. It is easy to show

that the function u blows up on ∂Ω since {uk} is monotone with uk = k on ∂Ω,

we provide the details here. Take any M > 0 such that for values of x near ∂Ω

we have uk(x) ≥ k − 1 > M . Thus, since our solution u(x) is monotone we have

u(x) ≥ uk(x) ≥ k − 1 > M . It is now clear that u is an explosive solution of (1).

Let us now suppose that
∫∞
1

[∫ s

0
g2(t) dt

]−1/2
ds = ∞ and assume, for contra-

diction, that u is a nonnegative explosive solution of Eq.(1). Let {vk} be the unique

nonnegative classical solution of

∆vk = p(x)g2(vk), x ∈ Ω, (18)

vk(x) = k, x ∈ ∂Ω,
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which exists by virtue of Lair (see Proposition 1 of [12]). Then, the sequence {vk}
is nondecreasing and one can show (e.g., see Proposition 2.1.1.) that vk ≤ u on Ω.

It follows that {vk} converges to a nonnegative function v on Ω. Another standard

bootstrap argument will show that v is a classical solution of Eq.(18). Clearly v is

also a nonnegative explosive solution on Ω. This, however, cannot happen since from

[12] we have that if (5) holds then (18) has no nonnegative explosive solution on Ω.

Hence, Eq.(1) has no nonnegative explosive solution on Ω. This completes the proof.

¥

2.2 Existence of Solutions on Unbounded Domains

We now consider the case where Ω is unbounded. We commence by considering

the case where Ω = Rn. It is apparent from previous work (see, e.g., [5, 6, 11, 15])

that the function p cannot behave arbitrarily as |x| → ∞ if we anticipate Eq.(1) to

have an entire explosive solution. We therefore add an asymptotic condition to the

function p and establish results for unbounded Ω similar to those of Theorem 2.1.2.

Prior to that, however, we need to prove an inequality that will be needed later.

Lemma 2.2.1. Suppose g1 satisfies inequality (4). Then

∫ ∞

1

1

f(s)
ds < ∞. (19)

Proof: We first note that since g1 satisfies inequality (4), then by [12] we have

∫ ∞

1

1

g1(s)
ds < ∞. (20)

Using this result, along with inequality (2) we have

∫ ∞

1

1

f(s)
ds ≤

∫ ∞

1

1

g1(s)
ds < ∞. (21)

Thus inequality (19) holds, completing the proof.
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Theorem 2.2.2. Suppose p is a nonnegative C(Rn) function which is c-positive with

Ω = Rn and

∫ ∞

0

rφ(r) dr < ∞, (22)

where φ(r) ≡ max|x|=r p(x). Then Eq.(1) has a positive entire explosive solution

provided f satisfies Condition (4).

Proof: By virtue of Proposition 2.1.1 there exist nonnegative solutions vk and

wk to the following boundary value problems

∆vk = p(x)g1(vk), |x| < k, (23)

vk(x) = ∞, |x| = k,

∆wk = p(x)g2(wk), |x| < k, (24)

wk(x) = ∞, |x| = k.

Since

∆vk = p(x)g1(vk) ≤ p(x)g2(vk), |x| < k, (25)

vk(x) = wk(x), |x| = k, (26)

by the maximum principle we have

wk ≤ vk, |x| ≤ k. (27)
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Using an analogous upper/lower solution argument as in Proposition 2.2.1 we have

that there exists a nonnegative solution uk to the boundary value problem

∆uk = p(x)f(uk), |x| < k, (28)

uk(x) = ∞, |x| = k,

with wk ≤ uk ≤ vk. If we can show that the sequence uk is uniformly bounded and

equicontinuous on any bounded domain, then the Ascoli-Arzela Theorem guarantees

that uk has a convergent subsequence on that domain. To do this, we first note

that without loss of generality we may assume 0 ∈ Ω. Now, consider the ball

B(0, 1) ⊆ Ω = Rn centered at zero with radius one. Notice that uk ≤ vk, and that

vk is decreasing. Thus, vk ↘ v. Thus, we have that uk ≤ v on B(0, 1) for all k.

Hence, the sequence uk is uniformly bounded on the closed ball B(0, 1) centered at

zero with radius one. We also have that uk is a solution to Eq.(28) on B(0, 1), and

uk ∈ C2(B(0, 1)). Thus, by Theorem 1.2.4, we have the gradient bound

sup
|x|<2

dx|∇uk(x)| ≤ C(sup
|x|<2

|uk|+ sup
|x|<2

d2
x|p(x)f(uk(x))|), (29)

where C = C(n) and dx = dist(x, ∂B(0, 2)). Furthermore, since dx ≥ 1 we have the

following result

sup
|x|<1

|∇uk(x)| ≤ sup
|x|<1

dx|∇uk(x)| ≤ sup
|x|<2

dx|∇uk(x)|. (30)

Hence, from (29) and (30) the sequence uk is also equicontinuous on B(0, 1). It now

follows, by the Ascoli-Arzela Theorem, that there exists a subsequence uki
which

converges to a nonnegative function u1, that is, uki
→ u1 on the ball B(0, 1) ⊆ Ω.

Now, consider the subsequence uki
on the ball B(0, 2) ⊆ Ω = Rn centered at

0 with radius two. It is clear that the subsequence uki
is uniformly bounded on

B(0, 2). Furthermore, uki
is a solution to (28), with k replaced by ki, on B(0, 2),
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and therefore uki
∈ C2(B(0, 2)). Thus, we have the gradient bound

sup
|x|<3

dx|∇uki
(x)| ≤ C(sup

|x|<3

|uki
|+ sup

|x|<3

d2
x|p(x)f(uki

(x))|), (31)

where C = C(n) and dx = dist(x, ∂B(0, 3)). Again, since dx ≥ 1 we have

sup
|x|<2

|∇uki
(x)| ≤ sup

|x|<2

dx|∇uki
(x)| ≤ sup

|x|<3

dx|∇uki
(x)|. (32)

Thus, the subsequence uki
is also equicontinuous on B(0, 2). Hence, by the Ascoli-

Arzela Theorem we have that there exists a subsequence ukij
which converges to a

nonnegative function u2, that is, ukij
→ u2 on the ball B(0, 2) ⊆ Ω.

Continuing this line of reasoning, we have that there exists positive solutions

u3, u4, u5, ..., on the balls B(0, 3), B(0, 4), B(0, 5), ..., respectively. Furthermore we

note that

u1 = u2 = u3 = u4 = u5 = ..., (33)

on the ball B(0, 1), and in general on the ball B(0,m) we have

um = um+1 = ...

We now need to show that the sequence of solutions {ui}∞i=1 converges on Ω = Rn to

some function u. A standard bootstrap argument will then show that u is a solution

of Eq.(1). Notice that on the intersection of balls B(0, i) centered at 0 with radius

i the sequence of solutions uj are equal for all i ≤ j. Thus, for any x ∈ B(0, k),

limi→∞ ui(x) = uk(x) ≡ u(x) for all |x| ≤ k. Hence, ui(x) → u(x), for all x ∈ Rn.

A standard bootstrap argument, as outlined in the proof of Theorem 2.1.2, will

show that u(x) is indeed a solution to (1). Lastly, we show that our solution u is an

explosive solution to (1) on Ω = Rn. Recall that the sequence of solutions uk(x) = ∞
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for |x| = k (i.e., the sequence of solutions uk are explosive.). Thus, the sequence of

solutions uk(x) = ∞ for |x| = k. It then follows that u(x) = ∞ as |x| → ∞. Hence,

u is a positive entire explosive solution to (1), completing the proof.

¥
We now wish to extend this result to somewhat arbitrary, unbounded domains

which the following theorem demonstrates.

Theorem 2.2.3. Suppose Ω is an unbounded domain in Rn, n ≥ 3, with compact

C2 boundary and suppose there exists a sequence of bounded domains {Ωk}, each

with smooth boundary, such that Ωk ⊆ Ωk+1 for all k = 1, 2, ... and Ω =
⋃∞

k=1 Ωk.

Suppose p is a nonnegative C(Ω) function which is also c-positive on Ω. Let

φ(r) = max{p(x) : |x| = r, x ∈ Ω},

and assume that φ satisfies inequality (22). Then, Eq.(1) has a positive explosive

solution provided f satisfies Condition (4).

Proof: We replace the functions vk and wk in the proof of Theorem 2.2.2 with

the solutions to

∆vk = p(x)g1(vk), x ∈ Ωk,

vk(x) = k, x ∈ ∂Ωk,

and

∆wk = p(x)g2(wk), x ∈ Ωk,

wk(x) = k, x ∈ ∂Ωk,

for each k. The proof now follows an analogous approach to that of Theorem 2.2.2.

We omit the details.
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¥
As in [12] we would like to establish the partial converse of Theorem 2.2.3. More

specifically, assuming the same hypothesis as Theorem 2.2.3 (especially concerning

the function p), we would like to prove that f satisfies Condition (4) whenever Eq.(1)

has a nonnegative large solution on Ω. Although this result is true for f(s) = sγ

and Ω = Rn (see [11]), we have been unable to establish it for general f except

for functions p which have quite specific decay rates, which we shall prove in the

corollary below. However, before proving the corollary, we first provide Theorems

2.2.4 and 2.2.6, two crucial “partial converses” to Theorem 2.2.3. Theorem 2.2.4 is

specifically important in that it, combined with Theorem 2.2.2, demonstrates that,

for functions f such as f(u) = uγ, (1) has a nonnegative entire large solution if

and only if γ > 1, that is, provided inequality (22) holds. This further extends the

results of [12] and [11]. More generally, for functions f for which Condition (19) is

equivalent to inequality (4) (e.g., f(s) = sγ), this establishes the desired converse to

Theorem 2.2.3 when Ω = Rn.

Theorem 2.2.4. Suppose the function p satisfies the hypothesis of Theorem 2.2.2

including inequality (22). If Eq.(1), with f replaced with g1, has a nonnegative entire

explosive solution, then f satisfies inequality (19).

Proof: From [12] we have that since g1 satisfies inequality (4) there exists a

nonnegative entire explosive solution v1 of ∆v1 = p(x)g1(v1). From [12] we have that

since Eq.(3) has a nonnegative entire explosive solution that g1 satisfies

∫ ∞

1

ds

g1(s)
< ∞.

Hence, since g1 ≤ f it follows that

∫ ∞

1

ds

f(s)
≤

∫ ∞

1

ds

g1(s)
< ∞. (34)

That is, f satisfies condition (19). This completes the proof.
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Lemma 2.2.5. Suppose there exists a nonnegative function h that is continuous on

[0,∞) and differentiable on (0,∞) such that 0 ≤ φ(r) ≤ h2(r) for all r ≥ 0 and h

satisfies one of the following:

(a) there exists a constant C such that rn−1h(r) ≤ C for all r ≥ 0; or
(b) limr→∞ rn−1h(r) = ∞ and

∫∞
0

h(r) dr < ∞.

If v is a nonnegative entire explosive radial solution of ∆v = φ(r)f(v), then f

satisfies inequality (4).

Remark. Amazingly enough we are able to use an identical proof of Lair (see

Lemma 2 of [12]) to show our results. We give the details here for completeness.

Proof: Following Osserman [15], we note that v satisfies (rn−1v′)′ = rn−1φ(r)f(v)

and multiply this expression by rn−1u′. Since v′ ≥ 0, we get

[
(rn−1v′)2

]′
= 2r2n−2φ(r)

d

dr

∫ v(r)

0

f(s) ds

≤ 2r2n−2h2(r)
d

dr

∫ v(r)

0

f(s) ds. (35)

If h satisfies (a), then (35) produces

[
(rn−1v′)2

]′ ≤ 2C2 d

dr

∫ v(r)

0

f(s) ds.

Integrating this over [0, r] yields (ψ(s) ≡ ∫ s

0
f(t) dt):

(rn−1v′)2 ≤ 2C2

∫ v(r)

v(0)

f(s) ds ≤ 2C2ψ(v(r)).

Taking the square root of both sides and rearranging terms gives

d

dr

∫ v(r)

v(1)

[ψ(s)]−1/2 ds ≤ 2Cr1−n.
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Integrating this over [1, R] produces

∫ v(R)

v(1)

[ψ(s)]−1/2 ds ≤ 2C

n− 2
(1−R2−n) ≤ 2C

n− 2
.

Letting R →∞ we have that f satisfies (4).

If h satisfies (b), then we integrate (35) directly. After integrating by parts on

the right side and dividing by r2n−2, we get

(v′)2 = 2h2(r)

∫ v(r)

0

f(s) ds− 2r2−2n

∫ r

0

(s2n−2h2(s))′ψ(v(s)) ds. (36)

The second term on the right side of this equation may be written as

2h2(r)
− ∫ r

0
(s2n−2h2(s))′ψ(v(s)) ds

r2n−2h2(r)
. (37)

For this ratio, we apply L’Hospital’s rule (which is allowed since the denominator

diverges to infinity) to get

lim
n→∞

− ∫ r

0
(s2n−2h2(s))′ψ(v(s)) ds

r2n−2h2(r)
= lim

n→∞
−ψ(v(r)) = −∞,

since v(r) →∞ as r →∞. Thus, the expression (37) is negative for large r. Using

this fact in (36) produces (for sufficiently large R):

(v′)2 ≤ 2h2(r)ψ(v(r)) for r ≥ R,

Hence,

∫ r

R

[ψ(v(s))]−1/2u′(s) ds ≤ 2

∫ r

R

h(s) ds,
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from which we get

∫ v(r)

v(R)

[ψ(s)]−1/2 ds ≤ 2

∫ r

R

h(s) ds.

Letting r →∞ and observing that the right side, by hypothesis, converges to a real

number, we have that f satisfies (4). This completes the proof.

¥
It is important to note that the previous lemma considers only the case where

the solution v is assumed to be a nonnegative entire explosive radial solution of

∆v = φ(r)f(v). In order to establish the following theorem, which, in turn, will assist

us in establishing our partial converse to Theorem 2.2.3, we first need a lemma that

considers the case where v is a nonnegative explosive radial solution of ∆v = φ(r)f(v)

on a bounded domain.

Lemma 2.2.6. Suppose there exists a nonnegative function h that is continuous on

[0,∞) and differentiable on (0,∞) such that 0 ≤ φ(r) ≤ h2(r) for all r ≥ 0 and h

satisfies Condition (a) of Lemma 2.2.5. If v is a nonnegative explosive radial solution

of ∆v = φ(r)f(v) on |x| ≤ R, then f satisfies inequality (4).

Remark. We note here that the proof follows identically to first part of Lemma

2.2.5 with some minor changes. We highlight the changes here.

Proof: As in Lemma 2.2.5, we have for ψ(s) ≡ ∫ s

0
f(t) dt,

d

dr

∫ v(r)

v(1)

[ψ(s)]−1/2 ds ≤ 2Cr1−n.

Integrating this over [1, R− ε], for ε > 0, produces

∫ v(R−ε)

v(1)

[ψ(s)]−1/2 ds ≤ 2C

n− 2
(1− (R− ε)2−n) ≤ 2C

n− 2
.
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Now, taking the limit as ε → 0+ we have

lim
ε→0+

∫ v(R−ε)

v(1)

[ψ(s)]−1/2 ds ≤ 2C

n− 2
.

Thus,

∫ ∞

1

[ψ(s)]−1/2 ds ≤ 2C

n− 2
< ∞,

completing the proof.

¥

Theorem 2.2.7. Let p be a c-positive, nonnegative C(Ω) function of Ω, an un-

bounded domain satisfying the hypothesis of Theorem 2.2.3. Let φ be defined as in

Theorem 2.2.3 and satisfy the hypothesis of Lemma 2.2.5, except part (b). If u is a

nonnegative explosive solution of Eq.(1), then f satisfies inequality (4).

Proof: Without loss of generality, we may assume, that 0 ∈ Ω and use an

argument inspired by Osserman [15]. We first show that for any a ≥ 0 the equation

∆ũ = φ(r)f(ũ) (38)

has a nonnegative solution with initial values ũ(0) = a and ũ′(0) = 0 valid in some

interval 0 ≤ r ≤ r0. We note here that in [15] this result follows easily from having

f ′ continuous everywhere. We now write (38) in the integral form

ũ(r) = a +

∫ r

0

s1−n

∫ s

0

tn−1φ(t)f(ũ(t)) dt ds, (39)

and for the moment replace the function f by fM defined by fM(s) = f(s) for

0 ≤ s ≤ M and fM(s) = f(M) for s ≥ M . Currently we have not specified a

particular value for M as it will be chosen momentarily. We now apply a standard

iteration procedure by letting u0 = a and generating a sequence {uk} in which uk is
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determined from uk−1 by

uk(r) = a +

∫ r

0

s1−n

∫ s

0

tn−1φ(t)fM(uk−1(t)) dt ds. (40)

Since

u′k(r) = r1−n

∫ r

0

tn−1φ(t)fM(uk−1(t)) dt ≥ 0,

we get u′k(r) ≥ 0 for all k = 1, 2, ... and r ≥ 0 so that (40) gives

0 ≤ uk(r) ≤ a + Φ(r)ΨM

where

Φ(r) =

∫ r

0

s1−n

∫ s

0

tn−1φ(t) dt ds,

and

ΨM ≡ max
0≤s≤M

fM(s).

We then have, noting first that limr→0 Φ(r) = 0, that we may choose M to be any

number larger than a and choose r0 > 0 near zero so that a + Φ(r0)ΨMr0
≤ M .

Then, an induction argument may now be used to show that uk(r) ≤ M for all

k = 1, 2, ... and 0 ≤ r ≤ r0. That is, uk is uniformly bounded for all k = 1, 2, ...

and 0 ≤ r ≤ r0. Furthermore, we have u′k(r) ≤ Φ(r0)ΨMr0
≤ M which implies the

sequence uk is equicontinuous on [0, r0]. Hence, by the Ascoli-Arzela Theorem there

exists a convergent subsequence uki
which converges to a nonnegative function ũ on

[0, r0]. The function ũ is a solution of (39) for 0 ≤ r ≤ r0 where f is replaced by fM .

However, since uk is bounded above by M for all k, it follows that the subsequence
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uki
is also bounded above by M for all i = 1, 2, ..., and so ũ ≤ M . Thus, ũ is a

solution of (39) on [0, r0].

Now, let [0, R) be the maximum interval in which ũ exists. Since

ũ′(r) = r1−n

∫ r

0

sn−1φ(s)f(ũ(s)) ds ≥ 0,

we get ũ′(r) ≥ 0 for all r ≥ 0, and hence if R < ∞, we must have limr→R ũ(r) = ∞.

Then, Lemma 2.2.6 implies that f must satisfy (4) since ũ would be a nonnega-

tive explosive solution of (41) on |x| ≤ R. Thus, let us now suppose R = ∞. If

limr→∞ ũ = ∞ we have that f must satisfy (4) due to Lemma 2.2.5, excluding part

(b). Suppose, for a contradiction, R = ∞ and limr→∞ ũ(r) = M0 < ∞. If this were

the case then the maximum principle would imply that ũ(|x|) ≤ u(x) for all x ∈ Ω.

This would imply that a = ũ(0) ≤ u(0) for any a > 0, which is ridiculous. Thus,

limr→∞ ũ(r) = ∞ and hence, f must satisfy (4). This completes the proof.

¥
As previously stated, if the function p satisfies, in addition to the hypothesis of

Theorem 2.2.3, a sufficiently rapid decay condition on at infinity, then the condition

on the function f given by (4) is both necessary and sufficient to ensure the existence

of an explosive solution of (1) on Ω. We now establish this result.

Corollary 2.2.8. Suppose Ω is an unbounded domain that satisfies the hypothesis

of Theorem 2.2.3. Let p be a nonnegative C(Ω) function which is also c-positive, and

assume that there exists a constant K such that for |x| large and x ∈ Ω, p(x) ≤
K|x|−α, α ≥ 2n − 2. Then, a necessary and sufficient condition for Eq.(1) to have

a nonnegative explosive solution on Ω is that f satisfy inequality (4).

Proof: Sufficiency is clear from Theorem 2.2.3. In order to prove necessity,

we need only show that the function φ, defined as in Theorem 2.2.3, satisfies the

hypothesis of Lemma 2.2.5, except part (b), so that Theorem 2.2.7 may be applied.
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Letting h(r) = Kr−α/2 for large r, we have that part (a) of Lemma 2.2.5 is satisfied

for α ≥ 2n− 2. Thus, we now invoke Theorem 2.2.7, establishing the corollary.

¥
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III. Conclusion

3.1 Conclusion

We began our research by attempting to establish existence of solutions to the

non-monotone semilinear elliptic equation

∆u = p(x)f(u), x ∈ Ω ⊆ Rn, n ≥ 3,

where the function f is nonnegative on [0,∞) and satisfies the inequality g1 ≤ f ≤ g2.

In our case, the function f was not monotone on [0,∞). This particular assumption

on f had not been considered in previous problems of this type. In proving the exis-

tence of solutions we have further extended the results of Lair [12], who considered

the same equation with the additional condition that f be nondecreasing.

Our first case considered the existence of solutions to Eq.(1) on a bounded

domain Ω ⊆ Rn. For our first result, Proposition 2.1.1, we established the exis-

tence of a nonnegative classical solution v to Eq.(9) on a bounded domain Ω by

cleverly using an upper/lower solution argument along with inequality (2). We then

showed, in Theorem 2.1.2, that there exists a nonnegative explosive solution u on

a bounded domain provided the function g1 satisfied the integral growth condition

given by inequality (4). Establishing this result was done by employing a more diffi-

cult variation of the upper/lower solution argument in order to produce a sequence of

solutions {uk} that were monotone and bounded above. Then, applying the standard

bootstrap argument showed that u was a classical solution of (1). Along with this

existence result we also showed, in Theorem 2.1.2, that if inequality (5) holds then

Eq.(1) has no nonnegative explosive solution. This particular result was established

by contradiction.

We further set out to establish the existence of solutions to (1) on unbounded

domains Ω, including Ω = Rn. Unlike the previous case we required an additional,
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asymptotic, condition on the function p in order to establish results on Ω similar

to those of Theorem 2.1.2. We then showed, in Theorem 2.2.2, that Eq.(1) had a

positive entire explosive solution u provided the function f satisfied inequality (4).

The proof of Theorem 2.2.2 turned out to be quite difficult since the sequence of

solutions {uk} generated from an upper/lower solution argument analogous to the

one used in Proposition 2.1.2 were not monotone, and we were not able to construct

a monotone sequence as done in Theorem 2.1.2. Instead we were able to establish

the existence of a positive entire explosive solution u to (1) by showing that the

sequence of solutions {uk} were both uniformly bounded and equicontinuous. With

both conditions met we then applied the Ascoli-Arzela Theorem to show the sequence

uk converged. This method was then applied to successive subsequences of the

sequence {uk} on successively larger domains (balls) which, eventually, covered the

whole space Rn. Another bootstrap argument showed that u was a classical solution

of (1). This result further extends the results of [12].

After establishing Theorem 2.2.2 we then extended our results by showing

that on some unbounded domain Ω in Rn, Eq.(1) had a positive explosive solution

u provided f satisfied inequality (4). This result was easily established with some

minor changes, and applying the same method as in Theorem 2.2.2. At this point

we had generalized the results of [12] for our case. However, it turned out that for

our later results we did not have to use the functions g1 or g2 to establish existence

of solutions. This was quite astounding since establishing the existence of solutions

to Eq.(1) when the function f is not monotone had never been done before.

Our first result where g1, g2 were no longer necessary was in Lemma 2.2.5,

where we showed that if u was a nonnegative entire explosive radial solution of

∆u = φ(r)f(u), then f satisfied inequality (4). We then established a similar lemma

on a bounded domain. It was interesting that both lemmas were established using

an identical method of Lair (see Lemma 2 of [12]), especially since f was not mono-

tone. With these two lemmas, along with Theorem 2.2.7, which established a partial
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converse to Theorem 2.2.3, we showed that a necessary and sufficient condition for

Eq.(1) to have a nonnegative explosive solution on Ω is that f satisfy (4). This

result, given by Corollary 2.2.8, is the most significant result of this thesis since it

generalizes the main result of [12].

In this thesis we have provided a useful generalization to the results of [12] in

which the condition on the function f is relaxed to allow f to be non-monotone.

This, in turn, allows Eq.(1) to be used for a more diverse range of problems that

may require f to be a non-monotone function, and in our case, bounded between

two monotone functions.

3.2 Further Work

Although we established many important results, we did encounter two prob-

lems in establishing results for the function f being non-monotone. In Lemma 2.2.1,

we showed that for g1 satisfying inequality (4), f satisfied (19). We believe this result

can be done for f satisfying (4), that is, if f satisfies inequality (4) then f satisfies

(19). We also encountered a similar problem with generalizing Theorem 2.2.4. In

this problem we established our results for Eq.(1), with f replaced by g1, having a

nonnegative entire explosive solution then f satisfied (19). It would be of great use

to provide the same result without having to replace f by g1 in (1).

If more time were permitted we would have liked to analyze our problem nu-

merically. A numerical approach may assist in solving Lemma 2.2.1 and Theorem

2.2.4. Another interesting problem would be to establish existence of solutions to

systems of equations of this type. Lastly, there still remains the open problem of

whether the existence of solutions to Eq.(1) can be established for f non-monotone

and with the conditions on g1 and g2 weakened to allow for an even more generalized

result. Lastly, an even greater challenge would be to establish the existence of solu-

tions to (1) for f non-monotone and without the condition g1 ≤ f ≤ g2. Although
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we are not sure if this can even be done , it would pose a challenging problem and

most likely done at the doctoral level.
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